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Abstract

Purpose – To present dynamical analysis of axisymmetric and three-dimensional (3D) simulations of
a nuclear fluidized bed reactor. Also to determine the root cause of reactor power fluctuations.

Design/methodology/approach – We have used a coupled neutron radiation (in full phase space)
and high resolution multiphase gas-solid Eulerian-Eulerian model.

Findings – The reactor can take over 5 min after start up to establish a quasi-steady-state and the
mechanism for the long term oscillations of power have been established as a heat loss/generation
mechanism. There is a clear need to parameterize the temperature of the reactor and, therefore, its
power output for a given fissile mass or reactivity. The fission-power fluctuates by an order of
magnitude with a frequency of 0.5-2 Hz. However, the thermal power output from gases is fairly
steady.

Research limitation/implications – The applications demonstrate that a simple surrogate of a
complex model of a nuclear fluidised bed can have a predictive ability and has similar statistics to the
more complex model.

Practical implications – This work can be used to analyze chaotic systems and also how the power
is sensitive to fluctuations in key regions of the reactor.

Originality/value – The work presents the first 3D model of a nuclear fluidised bed reactor and
demonstrates the value of numerical methods for modelling new and existing nuclear reactors.
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Nomenclature
v ¼ velocity, m s21

t ¼ time, s
r ¼ position vector
x, y ¼ coordinates

g ¼ gravitational constant, m s22

p ¼ pressure, Pa (N m22)
C ¼ specific heat capacity,

J kg21 K21
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T ¼ temperature, K
q ¼ flux of fluctuation energy,

kg m21 s23

Cd(r, t) ¼ d-th delayed group precursor
concentration

E ¼ neutron energy (eV)
Sf(r, t) ¼ fission heat source, cm23 s21

S(r, V, E, t) ¼ neutron source, cm2 3 s2 1

ev21 sr21

Sf(r, t) ¼ macroscopic fission cross
section, cm21

Subscripts
k ¼ phase(f ¼ fluid, s ¼ solid)
i,j ¼ x, y-directions
w ¼ wall

Greek symbols
H ¼ scattering-removal operator
ld ¼ decay constant (b decay) of

d-th precursor group, s21

bd ¼ fraction of all fission neutrons
(both prompt and delayed)
emitted per fission that appear

from the d-th precursor group
f(r, E, t) ¼ neutron scalar flux,

cm22 s21 eV21

f(r, V, E, t) ¼ neutron angular flux,
cm 2 2 s21 eV21 sr21

1 ¼ volume fraction
r ¼ density, kg m23

G ¼ frictional force exerted on the
wall by the phase, N m24 s

a ¼ volumetric interphase heat
transfer coefficient,
W m23 K21

V ¼ volumetric wall-phase heat
transfer coefficient,
W m23 K21

Q ¼ granular temperature, m2 s22

g ¼ collisional energy dissipation,
kg m21 s23

k ¼ thermal conductivity,
W m21 K21

V ¼ direction of neutron travel

Introduction
Nuclear reactor concepts based on gas fluidization of fine uranium fuel pellets have
attracted considerable attention over the years (Yamamoto, 1995; van Dam et al.,
1997; Golovko et al., 1999). Reasons behind this interest lies in their excellent heat
transfer capabilities and the mixing abilities of fluidized beds (Kunii and Levenspiel,
1991). The latter unifies the temperature of the bed, and increases the active surface
area from which heat transfer occurs. In addition, the constant mixing of the bed
potentially leads to a uniform burn-up of the uranium particles. A self-controlling
feature is also present in that as the bed is fluidized and the gas flow increases, the
power achieves a maximum at a particular bed height. At this height, the power
will be that at which fission-heat production is balanced by heat losses in a time
averaged sense.

A possible disadvantage of such a reactor is the chaotic particle flow characteristics
of the fluidized bed in which large bubbles and slugs propagate through it (Smolders
and Baeyens, 2001; Stewart and Davidson, 1967), changing the geometry and nuclear
criticality. This will impact on the fission rate which will also be highly variable –
although it is possible that the power output obtained from the heated gases may not
be as variable. This variability and chaotic unpredictability requires further
investigation in order that the concept can be assessed.

Deterministic chaos theory offers a powerful description of irregular behavior and
anomalies in systems which do not seem to be stochastic. In such systems, small
perturbations in the initial conditions lead to large discrepancies in the final solution
(Anishchenko, 1995). Indeed, chaos theory applied to the output signals is a useful tool
for the understanding of nonlinear systems as demonstrated by its application to the
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nuclear reactor investigated in this work. It is often used to quantify the regime
(e.g. bubbling and slugging) that fluidized beds operate in Huilin et al. (1995) and
Johnsson et al. (2000).

Power variability in a nuclear fluidized bed reactor has been studied by van Dam
et al. (1997) who investigated the sensitivity of the reactor to voidage fluctuations. This
reactor concept adopts aspects of the pebble bed reactor (Gerwin and Scherer, 1987)
and the fuel particles are of a design as reported by Gulden and Nickel (1977) (Golovko
et al., 1999). Other reactor designs of this type are described by Sefidvash (1996).

The modelling approach developed by the authors applies detailed spatial/temporal
modelling so that the reactor dynamics evolve naturally. This is in contrast to point
kinetics models (Hetrick, 1993) which, although often having adequate accuracy, require
correlation with existing data when the material evolves within the transient, such as in
fissile liquid transients (Mather et al., 1994; Mather and Barbry, 1991) and nuclear
fluidized beds. Others have used space-dependent kinetics to model transients in fissile
liquids, see Kimpland and Korneich (1996), Yamamoto (1995) and Rifat et al. (1993).
Some point kinetics models for powders are reported by Rozain (1991) and Basoglu et al.
(1994), and for the nuclear fluidized bed models (Golovko et al., 2000a, b, c).

An integrated neutrons/fluids/heat transfer method embodied in the finite element
transient criticality (FETCH) model (Pain et al., 1998a, 2001a), is used here. The
neutronics model in FETCH solves the neutron Boltzmann transport equation in full
phase-space (space, time, angle and speed travel) using a variational finite element
approach based on the second order even parity equations (de Oliveira et al., 1998). The
fluids algorithm is a high-resolution multiphase compressible flow model which solves
the conservation equations for both gas and solid particle phases (Pain et al., 2001e).
This unique fundamentally based combined methodology is able to model the complex
non-linear reactivity feedback mechanisms which may occur in nuclear reactor designs
such as the one studied in this paper. The FETCH model used here has been compared
against solution transient criticality experiments (Pain et al., 2001b, c, 1998a) and
fluidized bed experiments (Pain et al., 2001d, 2002a).

The two-fluid granular temperature method (TFGTM) was chosen to model the
gas-solid flow in the nuclear fluidized bed. Within the solid phase, particle modelling is
based on an analogy between the kinetic theory of gases and binary particle-particle
collisions (Lun et al., 1984; Johnson and Jackson, 1987; Jenkins and Savage, 1983).
These models are proving to be accurate for a wide range of gas-solid fluidization
scenarios (Samuelsberg and Hjertager, 1996; Ding and Gidaspow, 1990).

A secondary aim (other than investigating the dynamics of this reactor) of this
paper is to investigate the numerical convergence in space and direction of angle of
neutron travel of a conceptual 2D and 3D nuclear fluidized bed reactor. This will help
demonstrate the robustness of the numerical techniques introduced by Pain et al.
(2003b) (Pain et al., 2002b). These new numerical techniques are globally high order
accurate in space and time and may be used to resolve detailed spatially evolving fields
in a coupled high-resolution multiphase-flow and neutron-radiation dynamics in
nuclear fluidized bed reactors. In addition, a numerical investigation of the route cause
and sensitivity of particle concentration to fission-power variability is conducted. In
the latter we also developed a surrogate model of fission-power and reactor
temperature.
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In the next section, the Boltzmann neutron transport equations and the two-fluid
granular temperature equations are presented. The model used to solve this coupled
systems is summarized. The dynamics of 2D nuclear fluidized bed reactors are
explained and the grid dependence investigated. Numerical simulations conducted in
3D geometry are then shown. Dynamic analysis is then applied to fission-power and
voidage time series to investigate the bubbles dynamics and the relationship between
bubble production and fission power. A surrogate method is then proposed to predict
both fission-power and reactor temperature over a short time interval. Conclusions are
drawn in the final section.

The nuclear fluidized bed reactor model
With the rapid development of robust numerical techniques and corresponding
computer codes there has been an increasing trend toward modelling more and more
complex phenomena and in particular to model strongly coupled multi-physics
phenomena, e.g. fluid/structure interactions and fluids/radiation. The latter, the focus
of the applications in this paper, include radiation fluids applications from the
atmosphere (fluids and cloud radiation), exchanges in stars, thermal radiation resulting
from combustion problems (Kunii and Levenspiel, 1991), and coupled neutron
radiation and fluids problems for reactivity assessment in fissile solutions (Pain et al.,
1998a, b, 2001b), nuclear reactors (Sefidvash, 1996) including the novel thermal nuclear
reactor studied here (Pain et al., 2002b, 2003a; Golovko et al., 2000c).

The numerical methods used in this work (Pain et al., 2003b) are robust in a wide
range of situations. They are applied to model a helium cooled nuclear fluidized bed
reactor. Indeed, fluidized beds are characterized by sharp solids gradients and rapid
transient behavior. Therefore, they are stern tests for the numerical methods developed
to solve the set of non-linear differential conservative equations. In addition, due to the
mixing properties, heat and mass transfer processes are efficient in fluidized beds,
which make them excellent devices for power generation. However, due to the chaotic
fluidization characteristics, power generation from nuclear fuels may be difficult to
control and, therefore, may need feedback controls. Hence, a technique was developed
to predict, in a statistical sense, the fission rate over a short time interval.

Neutronics
The Boltzmann neutron transport equation (Table I) is solved using finite elements in
space, spherical harmonics (PN) in angle, multigroup in energy and implicit two level
time discretization methods. Such methods were applied using the second-order
even-parity variational principle as described by de Oliveira et al. (1998). This equation
is solved in full seven dimension phase space. Six energy groups where used and where
obtained by collapsing the original WIMS 69 group library taking into account
resonant self shielding and particle spatial effects into six energy groups (see WIMS,
1999). A set of cross-sections are generated for various temperatures and these are used
to obtain (with a temperature interpolation procedure) the local cross-section set for
each element of the finite element mesh. Six delayed neutron precursor concentration
groups (Duderstadt and Hamilton, 1976) are used in these simulations.

Two-fluid granular temperature model
In the TFGTM, both phases are continuous and fully inter-penetrating, and are
described by separated conservative equations with interaction terms representing the
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coupling between the phases. The TFGTM requires additional closure laws to describe
the rheology of the particulate phase. These closure laws are based on the assumptions
of kinetic theory for granular flows (reviews can be found in Gidaspow, 1994). As the
rheology of the granular phase was based on empirical correlations, Jenkins and Savage
(1983) and Ding and Gidaspow (1990) proposed a model in which the solid viscosity and
the normal stress are derived using an analogy between the particle-collision during
granular flows and the gas kinetic theory. Hence, the concept of granular temperature as
a measure of the agitation of particles was introduced. The granular temperature is,
therefore, a link between kinetic theory and traditional fluid mechanics. The set of
TFGTM conservative equations that describes the gas-solid flow and the additional
closure laws are summarized in Pain et al. (2001e, 2002a).

The following sections provide an overview of the discretisation and solution
methods used to solve the TFGTM equations, see Table I. The full description can be
found in Pain et al. (2003b) (Pain et al., 2001e).

High resolution method. A high resolution method is used in this work to achieve
bounded physical meaningful solutions that are also highly accurate. The method used
to limit the spatial derivatives is based on the NVD approach (Leonard, 1991) in which
face variables are calculated from the element centered values of the field being solved.
The variation of these face variables over each face is then limited using the NVD
approach so that, if a local extrema is found, then the method switches to a first-order
spatial discretisation. This switching is performed in a smooth manner and smoothly
depends on a extrema-detecting variable.

A second order temporarily limited time stepping method (based on the Crank
Nicholson method) is used in this work to help achieve bounded solutions, e. g. positive
volume fraction.

Momentum discretization. To maintain consistency with the discretized continuity
equation, pressure as well as volume fractions have a piecewise constant variation
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Table I.
Conservation equations
used in the simulations
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across each hexahedral element. For similar reasons the granular temperature
equations are also discretised using the high-resolution method described above. The
velocities have a tri-linear variation across each element and are thus centered on the
nodes of the finite element mesh. The momentum equations are discretised using a
Bubnov-Petrov-Galerkin method by multiplying each of the momentum equations for
the three velocity components by finite element basis functions and integrating the
resulting pressure term by parts. A non-linear Petrov-Galerkin method is used to
suppress velocity oscillations normal to the flow direction. The momentum equations
are discretised in time using implicit Crank-Nicholson time stepping, see Pain et al.
(2001e) for further details.

A semi-implicit projection method is used to solve the coupled multiphase
continuity and momentum equations. This method treats the coupling between the
phases implicitly in pressure. A mixed finite element method with a constant variation
of pressure throughout each element and a bi-linear variation of velocity is used here to
avoid singularities in the discretised equations.

2D numerical simulations[1]
Geometry
The fluidized bed nuclear reactor comprises of an internal cavity 6 m tall and 1.25 m in
diameter in which the fluidized fuel particles are free to move (Figure 1(a)). The particles
are 1 mm in diameter TRISO coated spheres (Golovko et al., 2000b) with an uranium
kernel and have a moderator to fuel (uranium) content by volume of 300-1. The particles
are described in Golovko et al. (1999). The internal cavity of the reactor is surrounded by
graphite moderator which slows down the neutrons and reflects them back into the
reactor. These slow neutrons are particularly effective at producing subsequent
neutrons from fission reactions and thus the largest power density of the reactor tends to
be situated near the walls of the reactor. It also means that as a large mass of particles
approaches the wall of the reactor, the reactor responds with positive reactivity
feedback. This provides the root source for the fission-power fluctuations in the reactor.

The graphite side, top and bottom walls of the reactor are 1 m in thickness. The
graphite at the top and bottom of the reactor is porous. This porous graphite is a
new design feature over previous design (Pain et al., 2002b) which enables the
reactor to be more sub-critical in the collapsed bed state and also provides a flatter
reactivity (Keff) curve versus uniformly expanded bed height. The reactivity of the
system, measured by the eigen-value Keff, is the ratio of the number of neutrons
generated from one neutron generation to the next. Thus a flatter reactivity curve
is safer, since if the system goes supercritical and deposits heat energy which
expands the bed, there is not a positive reactivity feedback associated with this
expansion. Curves showing the reactivity of the reactor system versus uniformly
expanded bed height are shown in Figure 2(a) for different porosities. Keff in these
figures is a measure of the criticality of the system of the neutron multiplication
and from one neutron generation to the next. The initial bed porosity used in the
simulations conducted here is 0.4.

The simulations were conducted in r-z geometry and the physical properties of both
phases used in this work are outlined in Table II. In addition, the initial and boundary
conditions are summarized in Table III and there is no heat loss to the walls. Several
fields were obtained by solving the set of fluid and neutron transport equations, among
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them, the following will be directly used to demonstrate the robustness of the
numerical methods advocated here: delayed neutrons concentration, solid volume
fraction, temperature of both phases, granular temperature and the velocity
components of the gas and solid phases. In order to investigate the time series of
these fields, several detectors were placed within the bed as shown in Table IV.

In the simulations presented in the following sections (Figure 1(b)), the domain had
(unless otherwise stated) 2,000 volume elements and 2,121 nodes, and the fluids
occupied domain had 750 volume elements and 836 nodes.

Physics of the reactor
As the uranium particles are fluidized and the bed expands, the system becomes
supercritical and so the fission heat source increases exponentially. The reactivity

Figure 1.
FLUBER reactor: (a)

Schematic and (b) finite
element mesh
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Figure 2.
The reactivity of the
system (Keff) versus
uniformly expanded bed
height
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(measured by the eigenvalue and which determines the magnitude of the exponent) of
the system increases on uniform bed expansion (bed height) as shown in Figure 2. This
shows that during the bed expansion, the reactivity reaches a maximum and on further
expansion of the bed the reactivity decreases due to the increasing in neutron leakage
out of the system.

The reactivity of the system is enhanced due to the increasing in moderated and
reflected neutrons back into the fluidized bed on its expansion. This reactor has been
re-designed so that it is more subcritical in collapsed bed or fully expanded state. In
particular the solid graphite walls surrounding the fluidized bed cavity have been
replaced at the top and bottom of the reactor, see Figure 1(a), by porous graphite with a
volume fraction of 60 percent. The effect on the reactivity, gauged by the eigen-value, is
seen in Figure 2(a). The porous graphite provides for a flatter curve which is desirable
on safety grounds. The response to void fluctuations near the bottom of the reactor is
reduced with this modification – due to the neutrons not being reflected back, as
readily, into the regions of high particle volume fraction near the bottom wall.

Solid phase Gas phase

Density (kg m23) 1.92 £ 103 Ideal gas law
Thermal Conductivity (W m21 K21) 1.0 2.15 £ 1021

Heat capacity ( J kg21 K21) 1.40 £ 103 5.24 £ 103

Particle diameter (m) 1.00 £ 1023 –
Dynamic viscosity (kg m21 s21) – 2.70 £ 1025

Table II.
Physical properties of the
solid (TRISO coated fuels

spheres) and the gas
(helium) phases

Initial 1s 0.40
Inlet gas velocity vfðr; z ¼ 0; tÞ ¼ 1:20 m s21

Inlet gas temperature T fðr; z ¼ 0; tÞ ¼ 226:858C
Initial gas and solid phase velocities vsðr; z; t ¼ 0Þ ¼ 0:0 m s21

vfðr; z – 0; t ¼ 0Þ ¼ 0:0 m s21

Initial gas and solid temperatures Tfðx; y; t ¼ 0Þ ¼ 226:858C
Tsðx; y; t ¼ 0Þ ¼ 226:858C

Soild flow at top boundary vsðr; z ¼ L; tÞ ¼ 0:0 m s21

Solid stress at top boundary tsðr; z ¼ L; tÞ ¼ 0:0 N m22

Particle-particle restitution coefficient epp ¼ 0:97
Wall-particle restitution coefficient ewp ¼ 0:90
Friction coefficient �m ¼ 0:3

Table III.
Initial and boundary

conditions applied into
the numerical simulations

Detector z(cm) r(cm)

01 100.00 62.00
02 150.00 62.00
03 200.00 62.00
04 100.00 31.00
05 150.00 31.00
06 100.00 0.00

Table IV.
Position of the six

detectors within the bed.
Detector 01 is at the

bottom corner of the inner
fluidized bed cavity
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As helium gas at 60 bars pressure is pumped through the reactor and the bed expands
and becomes supercritical, it heats up due to fission heat sources from neutrons. As the
temperature of the particles increases the reactivity of the system decreases and
eventually stabilizes in a time averaged sense, such that heat losses to the fluidizing
helium balances the fission power. However, voidage oscillations in the reactor will
provide a noisy fission-power.

Temperature feedback and mixing
The reactor has been designed to have an overall negative temperature coefficient.
Which means that as the temperature increases the reactivity of the system decreases
as shown in Figure 2(b). This provides a passive control of reactivity. This negative
feedback effect makes the power respond very quickly to temperature changes in the
reactor and enables this reactor concept to work (at least in the simulations) despite the
rapid changes in reactivity of the system due to redistributions of the fuel particles in
the reactor cavity.

It has been shown, in a previous study (Pain et al., 2002b), that this mixing allows
the particles to be exposed to the same fission-heat source over relatively small time
scales (6 s of reactor operation at quasi steady-state). This means that the fuel will be
uniformly burnt in the reactor. In that study it was also shown that despite the rapid
variations in fission rate by an order of magnitude over as little as 1 s, the temperature
of the reactor was remarkably steady and uniform. All these features have been
observed also in this reactor and are thus not investigated in detail here.

The central neutron transport theory simulation explained
An axi-symmetric transient simulation was conducted using the mesh shown in
Figure 1(a) and a P3 (transport theory) angular expansion (three angular moments). A
total fuel particle mass of 8429.28 g was used. Figures 3(a) and (b) show the fission rate
and maximum temperature, respectively, of the reactor. The fission rate has a
long-term oscillation associated with it as well as short-term oscillations. The
long-term oscillations occur because the reactor is initially cool and thus the negative
reactivity feedback effects associated with temperature take some time to take effect.
This allows a large fission spike to develop which deposits a great deal of heat energy
mostly in the bottom corner of the reactor and heats the system to a maximum
temperature of 7308C, see Figure 3(b).

This rapid increase in temperature dissipates through the reactor, due to solids
mixing and heat transfer through the gas phase. The result is a sharp initial pulse in
maximum temperature, Figure 3(b), after which the bed temperature becomes quite
homogeneous. However, it takes about 200 s for the fluidizing helium to extract enough
heat energy from the particles for the system to become supercritical again and the
fission rate to rise, see Figure 3(a). This is then followed by smaller but similarly
produced subsequent oscillations.

It is well known that delayed neutrons in other nuclear reactors and critical systems
(Pain et al., 2001c) combined with heat losses also provide a mechanism for producing
fission oscillations. A similar mechanism is believed to cause the longer fission power
oscillations in this reactor. Graphs of the maximum longest lived delayed neutron
precursor concentration, half life of 55 s, and the third longest lived delayed
concentration, half life of 5 s, respectively, are shown in Figure 3. Figure 3(c) also
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effectively shows the time averaged, over time scale of 55 s, heat source from fissions.
Figure 3(d) shows the maximum delayed neutron concentration of the third longest
lived group (half life of 6 s). The fission rate, solids volume fraction and gas
temperature at the bottom corner (detector 1) of the reactor core are shown over a
relatively short time period in Figure 4. Detector 1 is the detector at which the
temperature varies most rapidly and thus this temperature gives an indication of the
temperature range in the reactor.

Fine mesh simulation
In this section, the convergence in space of the simulated fluidized bed reactor is
examined by dividing all elements in half in each direction. Therefore, there are four
times the number of elements shown in Figure 1(a), i.e. there are 8,000 volume elements
and 8,241 nodes. The fluids occupied domain has 3,000 volume elements and 3,171
nodes. In addition, a total fuel particle mass of 9046.06 g was used.

Figure 3.
Time for the P3 simulation
conducted in r-z geometry
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This simulation was performed over 194 s using a P1 neutron angle approximation and
the fission rate and maximum gas phase temperature versus time for this short
simulation (due to the computation expense) are shown in Figure 5. This does not have
the large fission spike that most of the other simulations have. This highlights the
rather unpredictable starting characteristics of this reactor with these extreme start up
conditions. In addition, the solids temperature and particle volume fraction at detector
1 (bottom corner of reactor cavity) are shown in Figure 5(c) and (d). These figures are
included to highlight the correlation between particle volume fraction at the bottom
corner and power and, therefore, temperature of the reactor.

The volume fraction, solids temperature, 2nd longest lived delayed group and
shortest lived delayed group fields are shown in Figure 6 at 80 s into this simulation.
The similarity of the volume fraction and 2nd delayed groups has been noticed before,
and is attributed to the fission heat source for each particle being the same when time
averaged over the time scale of the half life of the 2nd delayed group which is 22 s. In
addition, the shortest-lived delayed group, with a half-life of 0.2 s, reflects the power

Figure 4.
(bottom corner of the
reactor) versus time
ð1; 050 # t # 1; 200 sÞ for
the P3 simulation
conducted in r-z geometry
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distribution in the reactor at a given instance in time. As seen in Figure 6(d) the power
is largest near the bottom corner of the internal cavity and next to the vertical walls.
The walls are made from graphite which moderates and reflects the neutrons back into
the reactor and coarsens subsequent fissions. Making the bottom of the 13 reactor from
porous graphite has reduced the local effectiveness to reactivity of this area. Since the
focus from this area of the reactivity is reduced and in some sense spread out, this has
the effect of reducing the response to voidage fluctuations and is one of the main
advantages of this new design. The solid volume fraction distribution at equally
spaced time intervals between 80 and 82.5 s into the simulation, is shown in Figure 7.
This is included to give an insight into the dynamics of this reactor. Correlations for
bubble size and height at which slugs occur (Davidson et al., 1985) suggest that the
slugs would appear at about a 1.5 m height above the cavity floor. This is reflected in
the results shown in Figure 7.

Figure 5.
Fission rate (a) and

maximum gas
temperature (b) versus
time for the fine mesh

simulation conducted in
r-z geometry
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Figure 6.
Various fields at 80 s into
the simulation with a fine
mesh
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The effect of varying the gas fluidization velocity
To investigate the effect of using a different inlet velocity, simulations with inlet
superficial gas velocity of 60 and 120 cm/s were performed (the latter was used in all
the other simulations). Figure 8 shows the fission rate and maximum solids
temperature versus time of the simulation with the lower inlet gas velocity. This
simulation was performed over a particularly long time of about 25 min because as can
be seen in the fission rate curve this simulation was prone to producing large peaks in
the fission rate, even after the initial conditions are no longer felt. The large peaks in
the fission rate increases the temperature and makes the temperature vary by as much
as 1008C. Notice that the temperature of this reactor is nearly as large (in a time average
sense after the initial pulse) as the temperature of the same simulation but with a larger
inlet velocity. This is due to the flatness of the Keff versus expanded height curve. The
fluidized bed has expanded to about a height of 2.25 m, and thus will produce a
temperature near that of the bed with 120 cm/s inlet velocity which expanded the bed
to approximately 4 m in height.

There are some similarities in temperature between this simulation and the
simulation conducted at 120 cm/s gas inlet velocity. This means that the quantity of
gas heated is half of the simulation conducted with an inlet gas velocity of 120 cm/s.
Therefore, the fission rate produced from the simulation with lower inlet gas velocity is
approximately half of the simulation performed with a larger inlet gas velocity as
shown in Figures 8(a) and 9(a) (Table V).

In order to investigate the reactor response to variable inlet velocity and also the
reproducibility of this response, a simulation was performed with a sinusoidal varying
gas inlet velocity. The period of this oscillation is 720 s and has a minimum and

Figure 7.
The solid volume fraction
at various time levels for

the simulation with a fine
mesh
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maximum velocity of 2120 cm/s (outgoing velocity) and 120 cm/s, respectively. The
velocity starts from zero and increases to its maximum which occurs at 180 s. Figure 10
shows the resulting fission rate and maximum temperature versus time for this
simulation. Notice that the fission rate starts to increase rapidly at about 50 s into the
simulation and reaches a peak shortly after this when the inlet gas velocity is about
51 cm/s. Much of the next 150 s are taken up by draining the large quantity of heat
energy thus deposited out of the system. The fluidizing gas velocity starts to decrease
at 180 s into the simulation and eventually reaches the stage when it no-longer fluidized
the particles. This is seen in the smoothness of the fission rate variation. The fission

Figure 8.
Time for the P1 simulation
conducted with a
relatively low inlet
velocity and in r-z
geometry
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Figure 9.
Time for the P1 simulation
conducted in r-z geometry
with an inlet gas velocity

of 120.0 cm s21

Simulation Length of the time-window (s) Power (MW-thermal)

P3 1003.35 10.41
P1 1809.62 12.00
P1-fine mesh simulation 194.18 4.20
P1-low inlet gas velocity 1311.22 5.46

Notes: Power output of the 2D simulations performed in this work. The power outputs listed here are
calculated after stationarity was reached in the numerical simulation Table V.
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rate starts to decrease because of the combined effectivity of the negative temperature
coefficient and the collapsed bed start (geometry of smallest reactivity). It continues
decreasing despite the fact that the negative gas velocity eventually brings cool helium
at 2208C from above to cool the particles. The particles are sufficiently cooled by this
gas that once the gas velocity at the distributor become positive again and the particles
fluidized, the fission rate repeats the large peak and in fact will carry on repeating this
whole cycle. The 2nd 15 fission peak occurs again at about 50 s into the second cycle.

Figure 10.
Time for the simulation
conducted with a
sinusoidal inlet velocity
and in r-z geometry
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The time averaged solid volume fraction for the four simulations with constant gas
inlet velocity is shown in Figure 11. Notice that as well as the particle concentration
being relatively large at the vertical walls it is also large near the central axis. However,
this is not consistent with experimental results observed in similar geometries and

Figure 11.
Time averaged solid

volume fraction (a-d) and
shortest lived delayed

neutron precursor
concentrations (e-h) for the
four different simulations
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with similar particle sizes and densities (Davidson et al., 1985). This discrepancy is
probably due to superimposing axi-symmetry on the flow. This has provided the
motivation for conducting 3D simulations. The time averaged shortest lived delayed
neutron precursor concentration which reflects the particle time averaged power
distribution is also shown in Figure 11(e)-(h).

Reactors performance
Table V shows the power output of the simulations described in the previous sections.
The power outputs shown in this table were calculated after stationarity was reached,
therefore, any energy spike obtained from the transient was neglected. The simulation
performed with a low inlet gas velocity produced approximately half of the energy
produced by the simulation performed with twice the inlet gas velocity as explained in
the previous section. The P1 and P3 simulations produced nearly the same amount of
energy, 12.00 and 10.41 MWt, respectively.

3D Numerical simulation results
The 3D simulation conducted here had a total of 24,288 volume elements and 25,991
nodes as shown in Figure 12. The fluids calculation domain had 12,096 elements and
13,357 nodes. It was performed over 22 s real time and took approximately 22 days of
CPU time, on a Compaq ES40 workstation with four 833 MHz alpha processors and
512 Mb of shared memory.

The initial and boundary conditions applied to this simulation are similar to those
applied to the r-z geometry, which are summarized in Table III, except that the total
amount of fuel now is 1,987 kg and the inlet flow rate is 120.0 cm s21.

The fission rate and maximum temperature in the reactor for this simulation are
shown in Figure 13(a) and (b), respectively. The fission rate becomes large enough to
start heating the solution at, approximately, 18 s into the simulation. The solids volume
fraction and temperature at detector 1 (situated at the bottom corner of the internal
cavity) are shown in Figure 13(c) and (d), respectively.

Various time averaged fields are displayed on a plane along the center of the reactor
in Figure 14. As shown in time-averaged solid phase velocity, Figure 14(d), the
particles, in a time-averaged sense, fall in the wall region and rise in the center of the
reactor.

Various other fields at 20 s into the simulation are shown in Figure 15. In this figure
it is seen that the gas moves preferentially through the bubbles and that the granular
temperature is largest in the wake region of bubbles.

Dynamic analysis
Despite the extensive efforts to improve the results obtained from numerical
simulations by the development of new numerical techniques, comparisons of such
results and those obtained from experiments are still an issue, since only statistical
quantities can be properly compared (Bai et al., 1997; Huilin et al., 1995; van der
Stappen et al., 1993). As the granular flow in fluidized beds are chaotic, dynamic
analysis has been applied to time series of either voidage or pressure fluctuations to
identify flow regime (e.g. bubbling and slugging bed).

Some noteworthy reviews and fundamentals of chaos theory can be found in
Anishchenko (1995) (Johnsson et al., 2000). One of the first works published on chaos
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theory applied to fluidized beds is due to Baskakov et al. (1986), who associated
pressure fluctuations with bubbles flowing around pressure transducers. Huilin et al.
(1995) used pressure fluctuation data, obtained from a lab-scale circulated fluidized bed
(CFB), to calculate the correlation dimension, which can be defined as a measure of the
spatial homogeneity of an attractor. They used the correlation dimension to infer real
dimensionality of a system and to establish the number of differential equations that
are needed to describe a system. They also used Lyaponov exponents to determine how
chaotic different fluidization regimes are.

Dynamic systems that display a chaotic behavior, can only be analyzed through
statistical methods. The set of differential equations used to describe such systems are
time-dependent, however, after a period of time, the solution tends to become
time-independent, i.e. reaches stationarity. Once stationarity is reached, statistical
analysis can be performed. Indeed, many researchers have addressed the issue of
establishing a stationary point, from which statistical analysis can be performed.

In this section, the results obtained from the numerical simulations were analyzed
through deterministic chaos theory. In order to identify flow regime, some statistical
parameters, such as power spectra density, correlation dimension and Kolmogorov
entropy, were obtained from voidage and fission-power time series. Reviews about
dynamic analysis can be found in Anishchenko (1995) and in Yaffee and McGee (2000).
As the numerical simulations performed in complex geometries are very
computational demanding, a surrogate method based on a simplified Kriging

Figure 12.
Nuclear fluidized bed

reactor: (a) Schematic and
(b) finite element mesh
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technique was applied to fission-power time series in order to predict, in a short-time
sense, the fission-power behavior. Therefore, some variables, such as fission-power,
pressure or temperature, could be monitored and used to provide short-term
predictions. These predictions might be used in the fluidized bed nuclear reactor to
provide control.

Testing for stationarity
Stationarity is defined as a property in which the mean and the variance of a given time
series do not change over a period of time. This means that the dynamic properties of
the systems underlying signal must not change during that period of time, and over
short-time intervals, the variance should not vary significantly (Yu et al., 1998).

Stationarity can be classified into weak stationarity, which has a constant mean and
variance, and strongly stationarity, which has all higher-order moments constant.
Although strongly stationarity is considered to be genuine stationarity, it is hardly
seen in practice (Kantz and Schreiber, 2002).

Figure 13.
Time for the simulation
conducted with 3D
geometry. Oscillations of
solid volume fraction (c)
and gas phase
temperature (d) obtained
from a detector placed in
the bottom corner of the
internal cavity
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Several statistical tests for stationarity have been proposed in the literature (Yu et al.,
1998; Kantz and Schreiber, 2002); in most of these tests a parameter (for example,
power spectrum, mean or variance) is estimated using different segments of the time
series. The set of parameters are evaluated and if the variation among them is
significant, i.e. beyond an estimated deviation, the time series is assumed to be
nonstationary. Kennel (1997), however, used the information obtained from time
distribution of points in a state space to infer stationarity. His method investigates the
geometry of orbits in state space by quantifying nonstationarity from the properties of
nearest neighbors in state space. Schreiber (1997) tested for stationarity by checking
for compatibility of nonlinear approximations to the dynamics in different segments of
the time series. Casdagli (1997) made a brief review of recurrence plotting techniques to
detect nonstationarity in nonlinear time series.

In this work, the power spectra density of several fragments of data of fission rate
and voidage fluctuations were calculated. The dominant frequency and overall
behavior of the set of PSD’s were compared, and if no large shift to any side was found,
the dynamics were assumed to have reached stationarity. The PSD’s of fission rate
fluctuations of the P1 simulations are shown in Figure 16. From the original time series
ðDt ¼ 2; 010 sÞ; the first 500.0 s were discarded, and the remaining time series
investigated. In Figure 16(a), the PSD of 1510.0 s of numerical simulation is plotted and
a dominant frequency between 0.25 and 0.375 is observed. Similar dominant
frequencies can be observed using different segments of data, Figure 16(b)-(d),

Figure 14.
3D simulation: various

time-averaged fields
drawn on a plane along the

centre of the reactor: (a)
solid volume fraction; (b)

6th delayed group; (c) gas
phase velocity and (d)

solid phase velocity
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indicating that the time series has reached stationarity. This test was applied to all
time series obtained from numerical simulations described in this work, and all
analysis were conducted at stationarity.

Bubble production and fission-power coupling
In fluidized beds operating in bubbling regimes, bubbles are formed in the bottom
region, i.e. in the vicinities of the distributor, and as they rise in the center region,
particles are dragged in their wake creating strong vortices (Buyevich et al., 1995). In
the edges of the bubbles, regions of low solid volume fraction, act as shells around the
bubbles. In such shells, the granular temperature (particle agitation) is enhanced due to
both the increasing of the mean free path between particles and the increasing in
collision frequency. As bubbles rise upwards through the bed, the bubbles, eventually
coalesce, producing larger bubbles which are released in the free board, dragging
particles in their wake, (Pain et al., 2002a). In this train of rising bubbles, particles are
replaced in the bubbles’ wake enhancing the heat transfer rate. Simultaneously,
particles fall, preferentially in the wall region, as shown in Figure 14(d). Once these
particles get near the distributor they change directions due to the rising bubbles. Such
flow reorientation was previously reported by van der Stappen et al. (1993).

In the simulations described in this work, although the overall dynamics are very
similar to those described in the literature (Davidson et al., 1985; Pain et al., 2002a), the

Figure 15.
Various fields at 20 s into
the 3D simulation shown
on half the domain
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releasing of fission-power, due to the reactivity, followed by bed expansion, add an
important variable in the investigation of the balance of forces acting during
fluidization. In order to investigate the bubbles formation, mainly in the bottom region,
the power spectra density of voidage and fission rate fluctuations were calculated.
Figure 17 shows the PSD of voidage fluctuations obtained from the six detectors
during the P3 simulation. Lower dominant frequencies were obtained from the
detectors placed some distance from the distributor, i.e. detectors 2, 3 and 5. At these
detectors, the dominant frequency is approximately 0.40 Hz, although detector 5 has a
second peak at 0.60 Hz. Detectors 1, 4 and 6 (in the bottom region) have similar
dominant frequencies between 0.65 and 0.70 Hz. The PSD obtained from the fission
rate fluctuations of the P3 simulation, Figure 18(a), shows two major dominant
frequency ranges, the first around 0.5 Hz and the second in the range between 0.60 and
0.70 Hz, which matches with the dominant frequencies found in Figure 17.

The PSD of fission rate fluctuations for the central P3 and the P1 simulations are
shown in Figure 18. In all simulations, dominant frequencies between 0.50 and 0.75

Figure 16.
Stationarity test of the P1

simulation
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were found, and a similar amplitude range can be seen, except for the P1 simulation
performed with a fine mesh which has larger amplitudes. This is probably due to the
fact that there is not enough data, after the system has reached stationarity, to compute
the PSD. As shown by Figures 18(a) and 17(a), (d) and (f), there seems to be a strong
link between the particle concentration fluctuations at the bottom region of the reactor
and the fission power, with the same dominant frequency of 0.7 Hz. The PSD of

Figure 17.
Power spectra of voidage
fluctuations at the six
detectors (Table IV) in the
P3 simulations
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voidage fluctuations obtained from the four simulations at detector 1 (bottom corner)
are shown in Figure 19.

As the fission rate production and solid volume fraction fluctuations are related
through the geometrical dependence of reactivity of the reactor, the cross correlation
function (CCF) was used to calculate the time-lag between these time series. The CCF is
defined as a measure of the similarity between two different data sets: the input and
output time series. It is computed as the covariance between the input and output time
series divided by the product of the standard deviation of both time series:

CCF ¼

Xnþj

t¼1

ðXt2j 2 XÞðYt 2 Y ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
t¼1

ðYt 2 Y Þ2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
t¼1

ðXt 2 XÞ2

s if j # 0

Xnþj

t¼1

ðXt 2 XÞðYtþj 2 Y ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
t¼1

ðYt 2 Y Þ2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
t¼1

ðXt 2 XÞ2

s if j . 0

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð1Þ

Figure 18.
Power spectra of fission
rate fluctuations for the

four simulations
conducted in this work
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where X and Y are the input signal and response, respectively. n and j are the number
of sample points and the lag of cross-correlation, respectively. Significant positive
spikes in the cross-correlation function indicate that the input variable variations lead
the corresponding variations in the output variable. However, significant negative
spikes indicate possible feedback from the output to the input variables (Yaffee and
McGee, 2000). The CCF indicates the transfer function direction between the time series
and delay between input and output. Indeed, after some delay Dt, if the CCF is positive,
then Xt is correlated after some delay Dt with YtþDt: Figure 20 shows the cross
correlation calculated between solid volume fraction and fission rate fluctuations at six
detectors (Table IV) in the P3 simulations. Shorter time delays were found in detectors
2 and 3. Figure 20(b) shows that approximately 0.19 s after an increase in solid volume
fraction, there is an increase in power. As large bubbles rise from the wall region, they
travel upwards through the reactor, generating particle concentration waves. Such
waves are responsible for negative time-delays as shown in detectors 1 and 5. In
addition, several negatives peaks can be noticed, indicating a reaction feedback from
the power released from the formation of bubbles.

Study of the flow regime and macrostructure through dynamics analysis
In this section two statistical parameters: maximum-likelihood estimations of the
correlation dimension (DML) and the Kolmogorov entropy (KML) are used to help

Figure 19.
Power spectra of voidage
fluctuations at detector 1
(in the bottom corner of the
bed) for the four
simulations
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Figure 20.
Cross correlation of solid

volume fraction and
fission rate fluctuations at

four detectors (Table IV)
in P3 simulations
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investigating the chaotic behavior of simulated gas-solid fluidized beds. These
parameters (Johnsson et al., 2000; Pain et al., 2002a) were calculated by the means of the
RRCHAOS software package (Schouten and van der Bleek, 1993).

The correlation dimension (Dt) estimates the average number of data points within a
radius r of the data point. Indeed, the correlation dimension can be defined as a
measure of the spatial homogeneity in the state space and it is obtained from the
correlation integral, C(l ), which is defined as the probability that two points on the
attractor are within a cell of size l (Grassberger-Procaccia method – Grassberger and
Proccaccia, 1983a):

Cðl Þ ¼
1

NðN 2 1Þ

XN
j¼1

XN
i¼1;i–j

Qðl 2 kxi 2 xjkÞ ð2Þ

where xi and xj are the pair of points on the attractor whose distance is smaller than l, N
is the number of points, Q is the Heaviside step function defined as:

QðmÞ ¼
1 for m $ 0

0 for m , 0:

(
ð3Þ

kxi 2 xjk is the distance between two points in the attractor. For small length scales,
the correlation integral and the correlation dimension, Dl, are related (Anishchenko,
1995):

Cðl Þ < l Dl : ð4Þ

Schouten et al. (1994a) suggested the following expression for the maximum-likelihood
estimation of the correlation dimension (DML):

DML ¼ 2
1

M

XM
i¼1

ln
li
l0

� �" #21

ð5Þ

where M is the sample size of interpoint normalized distances ri ¼ li=l0: The distances
li are normalized by the maximum scaling distance, l0.

The Kolmogorov entropy can be defined as the sum of the positive Lyapunov
exponents of chaotic systems. Indeed, it is a measure of the rate of information loss
along the attractor, i.e. a measure of the degree of predictability of points along the
attractor given an arbitrary point (Schouten et al., 1994b). Thus, the Kolmogorov
entropy might be used to characterize the time dependent behavior of fluidized beds
(van der Stappen et al., 1993).

The basic idea behind the Kolmogorov entropy is the average time required for two
orbits of the attractor, which are initially very close, to diverge. Thus, let us define two
points on the attractor which are, initially, within a maximum distance l0. Grassberger
and Proccaccia (1983b) suggested that the separation of nearby points are exponential
and the time interval, t needed to separate such points by a distance larger than l0 are
exponentially distributed as

CðtÞ < e2Kt
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where K is the Kolmogorov entropy. For constant time intervals, t0 ¼ 1=f s; a discrete
distribution function may be defined as:

CðbÞ ¼ e2Kbt0 ; b ¼ 1; 2; 3; . . . ð6Þ

b is the number of sequential pairs of points on the attractor, given an initial pair of
independent points within a distance l0, in which the interpoint distance is, for the first
time, larger than l0.

The normalized probability density function of finding a distance larger than l0 after
exactly b interpoint distances is expressed as (Schouten and van der Bleek, 1993):

X1
b¼1

pðbÞ ¼ ðeKt0b 2 1Þ
X1
b21

e2Kt0b ¼ 1 ð7Þ

Thus, the probability of finding the exactly sample ðb1; b2; . . .bM Þ; depending on Kt0;
from M random pairs of independent points on the attractor is

pðKt0Þ ¼ pðb1; b2; . . .; bM ;Kt0Þ ¼
YM
i¼1

pðbi ;Kt0Þ ¼ ðeKt0 2 1ÞMe

2M

XM
i¼1

bi
ð8Þ

The maximum of this function leads to the maximum-likelihood estimation of the
Kolmogorov entropy, KML, (Schouten et al., 1994b)

KML ¼ 2f sln 1 2
1
�b

� �
ð9Þ

with

�b ¼
1

M

XM
i¼1

bi ð10Þ

where �b is the average value of the set of bið;i ¼ {1; 2; . . . ;M}Þ in the sample of size
M, and fs is the sampling frequency. KML is measured either as bits/s or as bits/cycle,
which are related to the loss of information in real time units and within an average
cycle in the time series, respectively (Schouten et al., 1994b).

These parameters must be used together with the power spectra density to
characterize fluidization regime and fluid flow macrostructure. Johnsson et al. (2000)
studied gas-solid fluidization regimes by investigating pressure time series. According
to them, for low and high velocities slugging regimes, the DML should be around 2.0
and 6.0, respectively, whereas for bubbling regimes, the maximum-likelihood
estimation of the correlation dimension should be around 5.0. The DML obtained
from voidage fluctuations, shown in Table VI, indicates that the flow oscillates from
bubbling to the high-velocity slugging regime. Such oscillation is mainly due to the
transient flow characteristic and may be observed in the set of diagrams shown in
Figure 21.

The maximum-likelihood estimation of the Kolmogorov entropy is strongly related
to the macrostructure of the flow, therefore, it may be used to characterize the
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complexity of the flow regimes. Pain et al. (2002a) reported that the KML varies with
detector position, i.e. KML increases with the increasing of detector’s distance from the
distributor. Such behavior, due to bubbles formation and recirculation of particles, can
be observed in Table VII.

Flow regime characterization
The TRISO coated particles used in the simulations performed in this work belongs to
group D of Geldart’s classification of powders. Although such powders may be easily
spouted, fully bubbling and slugging regimes may also be found and the transition
between these flow regimes is not easily distinguished.

Bayens and Geldart (1974) classified the slug behavior in two major types:
round-nose and square-nose. Round-nose slugs are fast-bubbles usually associated
with the fluidization of powders of group A. They are characterized by downflow of
particles with a rising slug and a gas emulsion interface. In addition, the slug rise
velocity is larger than the gas velocity. The square-nose slug, however, may be
characterized by coarse particles been fluidized by large gas velocities. The slug rise
velocity here is lower than the gas velocity and there is no clear slug boundary as
shown in the set of diagrams in Figure 21. In these diagrams, in which solid volume
fraction of the P1 simulation evolves in time, the fluidized bed reactor oscillates from
fully bubbling to the slugging regime.

Several empirical correlations have been suggested to predict many parameters
associated with transient bubbling-slugging beds such as minimum slugging velocity,
mean bubble diameter, maximum bed height, single slug velocity and slugging
frequency (Noordergraaf et al., 1987; Davidson et al., 1985). Some of these parameters
are investigated here.

Stewart and Davidson (1967) suggested that at the onset of slugging

f ¼
U 2 Umf

0:35
ffiffiffiffiffiffi
gD

p $ 0:2 ð11Þ

where Umf and D are the minimum fluidization velocity and the bed diameter. U is the
superficial velocity, corrected at the time-averaged temperature. The minimum
slugging velocity, Ums is given by

Ums ¼ Umf þ 0:07
ffiffiffiffiffiffi
gD

p
ð12Þ

Bayens and Geldart (1974), however, reported that equation (12) is valid if Hmf .
1:3D 0:175; otherwise, Ums is expressed as

Simulation Det. 01 Det. 02 Det. 03 Det. 04 Det. 05 Det. 06

P3 6.86 5.26 5.23 6.04 3.28 5.34
P1 5.22 4.43 4.42 5.04 2.53 4.79
P1-fine mesh simulation 3.64 5.24 6.64 7.10 4.34 3.29
P1-low inlet gas velocity 3.51 6.18 6.37 5.41 3.01 4.71

Table VI.
Maximum likelihood of
the correlation dimension
obtained from the
voidage fluctuation of the
four 2D numerical
simulations performed in
this work
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Figure 21.
Simulation of a fluidized

bed reactor operating (a) in
the bubbling regime and

(b) in the transition
between bubbling and

slugging regime

Simulation Det. 01 Det. 02 Det. 03 Det. 04 Det. 05 Det. 06

P3 4.48 7.11 7.71 4.92 7.28 4.73
P1 3.68 4.82 4.95 4.19 4.60 3.83
P1-fine mesh simulation 2.09 8.75 10.97 8.41 14.36 2.50
P1-low inlet gas velocity 1.69 2.18 3.19 2.99 4.11 2.58

Notes: Maximum likelihood of the Kolmogorov entropy (in bits/s) obtained from the voidage
fluctuation of the four 2D numerical simulations performed in this work Table VII.
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Ums ¼ Umf þ 0:07
ffiffiffiffiffiffi
gD

p
þ 0:16ð1:3D 0:175 2 HmfÞ

2 ð13Þ

where Hmf is the bed depth at minimum fluidization.
Most of the expressions available in the literature concerning slugging and

transition regimes (see Smolders and Baeyens, 2001; Chen and Bi, 2003; Davidson et al.,
1985, for further details) were obtained by fitting well-controlled experimental data.
Such experiments were mainly conducted with particles belonging to groups A and B
of Geldart’s powders classification and in narrow beds. In addition, wall effects and
particles frictions were mostly neglected in the majority of these works (Smolders and
Baeyens, 2001). In the bubbles shown in the last diagram of Figure 21(b), f was <1.3
and the minimum slugging velocity was 69.91 cm s21. This intermittent slugging
behavior result agree with the information obtained from maximum-likelihood
estimation of the correlation dimension (Table VI).

However, the fluidization behavior described in equations (11)-(13) rely on both, the
bed properties and the excess gas velocity, and do not take into account others effects
such as bubble formation frequency. Cranfield and Geldart (1974) studied the
fluidization of large particles ð1; 000 # dp # 200mmÞ in relatively wide (<0.38 m2 of
cross-section area) and deep (<0.35 m) beds. They noticed that bubbles are formed some
distance above the distributor and are initially circular without turbulent wakes. These
bubbles rise and smoothly expand horizontally. They also reported that the bubble
frequency at a given bed height is slightly dependent on the excess of gas velocity. The
best fit of their data led to the following expression for the bubble frequency:

F ¼ 16:7H 20:72 ^ 20 percent ð14Þ

whereH is the fluidized bed height. Noordergraaf et al. (1987), however, investigated the
slug frequency of coarse particles fluidized in cylindrical beds 0.1 m wide and 1.0 m high.
They found that the slug frequency, obtained from the PSD of pressure fluctuations may
be expressed as

F ¼ 0:32
U 20:15

H
ð15Þ

Table VIII shows the frequency obtained from equations (14) and (15) and from the PSD
of pressure fluctuations in the simulations performed here. The obtained dominant
frequencies do agree with the estimated frequencies calculated from the correlations and
in particular with equation (15).

Bed expansions during the fluidization of coarse particles 489 # dpm # 3870mm in
slugging regime was studied by Baker and Geldart (1978). They investigated the

Simulation Detector
Fcorr ^ 20 percent ðHzÞ

(equation (14))
Fcorr ðHzÞ

(equation (15)) Fcalc ðHzÞ

P3 02 1.00 0.59 0.65
03 0.61 0.29 0.33

P1 02 1.00 0.58 0.65
03 0.61 0.29 0.28

P1-fine mesh simulation 02 1.00 0.58 0.87
03 0.61 0.29 0.45

P1-low inlet gas velocity 02 1.00 0.65 0.77
03 0.61 0.32 0.36

Table VIII.
Slug frequencies
calculated from equations
(14) and (15) and obtained
from the PSD of pressure
fluctuations (detectors 2
and 3 – Table IV) of the
simulations performed
here
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maximum bed height attained by slugging bed surface during a single oscillation
ðH 0

maxÞ: Experiments carried out on systems with 2 # Hmf=D # 5 resulted in a linear
correlation between H 0

max and the excess of gas velocity

H 0
max

Hmf
¼ 1 þ

U 0
max 2 Umf

0:35
ffiffiffiffiffiffi
gD

p ð16Þ

where U 0
max is the maximum velocity reached during an oscillation. Instantaneous bed

height calculated from equation (16) for a few snapshots are in good agreement with
the observed bed height as shown in Table IX. In the range of gas velocities reached
during the numerical simulations, Hmax may vary from 1.90 to 5.8 m for the simulation
performed with a low inlet gas velocity and from 1.90 to 8.0 m for the other simulations.

Matsen et al. (1969) reported that the rise velocity of a slug, (UA), in a freely slugging
bed may be calculated through the following empirical correlation:

UA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:35gD

p
þ U 2 Umf ð17Þ

In the simulations performed here, no clear slug boundary could be observed, therefore,
the slug rise velocity is estimated from a number of particle volume fraction
distributions showing the rising of slugs and bubbles. Equation (17) suggests that the
rise velocity of a slug may vary from 2.64 to 3.67 m s21, with the excess gas velocities
shown in Table IX. The velocity of some of the slugs observed in the simulations
oscillated from 0.75 to 3.50 m s21. Although this expression does take into account wall
effects and excess gas velocities, it does neglect the influence of drag and the increasing
of the bubble size due to coalescence.

In order to build-up a semi-empirical model that may predict the bubble sizes, Rowe
(1976) fitted the few reported data from fluidization experiments. Such experiments
involved particles of diameter up to 500mm and superficial velocities of the order of
magnitude of 0.40 m s21 and the following expression was suggested

dB ¼ ðU 2 UmfÞ
0:5ðH þH0Þ

0:75g 0:25 ð18Þ

where H0 is a fitting parameter that may characterize the distributor. At the height of
0.56 m, i.e. half of the initial bed height, the mean bubble diameter calculated from
equation (18) was 0.89 m. This means that the mean bubble diameter at this height is

Simulation t(s)
H 0

max ðmÞ
(equation (16))

H 0
max ðmÞ

(simulation)

UA

(m s21)
(equation (17))

dB

(m)
(equation (18))

P3 771.10 5.00 8.04 3.50 0.95
P1 394.55 5.55 5.91 3.56 0.97
P1-fine mesh simulation 144.70 4.50 4.87 3.67 1.00
P1-low inlet gas velocity 226.05 3.40 3.86 2.64 0.61

Note: (a) comparison between instantenous maximum bed height calculated from equation (16) and
observed in the numerical simulations, (b) rise velocity of a slug (equation (17)) and (c) prediction of the
mean bubble’s size (equation (18)) at 0.80 m above the distributor

Table IX.
Several parameters

calculated from
semi-empirical

correlations
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nearly as wide as the bed diameter, however, in numerical simulations, it is very difficult
to measure dB with accuracy. Therefore, by visual inspection of the animations produced
from the simulations (see also Figures 7 and 21), it can be seen that the bubbles/slugs
formed are approximately of the same diameter of the bed. Table IX shows the mean
bubbles diameters calculated at 0.8 m above the distributor. In the transition between the
fully bubbling and slugging regimes, as shown in the set of diagrams in Figure 8(a) (i.e.
the simulation involving a lower inlet gas velocity), a relatively large bubble rises in
the center region at a height of 0.8 m. The diameter of this bubble is 0.48 m while the
calculated dB is 0.61 m. Reasons for such a discrepancy are possibly due to the
experimental fitting parameter H0 and to the 2D geometry used here.

As the bubble formation is associated with the generation of power as described in
the previous section, the correlations presented in this section are not necessarily
accurate and must be used with caution.

Surrogate model for time series prediction
Prediction of chaotic phenomena is a major challenge due to the high computational
cost associated with long-time numerical simulations. In addition, by predicting some
processes parameters, such as gas pressure, temperature and voidage in fluidized beds,
feedback controllers can be used to ensure safety and efficiency. Neural network
methods (Platt, 1991; Moody and Darken, 1989) were successfully used to predict
dynamical behavior in stationary and non-linear time series over a short time interval.

In this work, a kriging technique is used to interpolate the time series data
generated by the P1 and P3 numerical simulations. A detailed description of kriging
interpolation methods can be found in Stein (1999) and Olea (1999). In summary,
kriging interpolation is a method which predicts unknown values from data observed
at known locations. As the time series represents a surface in space-time, mapping of
such a surface can lead to accurate interpolations in phase space and model
predictions.

Let us first consider a finite time series CðxÞ ¼ {Cðx1Þ;Cðx2Þ; . . . ;Cðxn21Þ;CðxnÞ}
spanning the m-dimensional phase-space. This time series is assumed to be stationary
if the mean, variance and power spectra density are similar to the adjoining time series
Cðxþ dÞ ¼ {Cðx1 þ dÞ;Cðx2 þ dÞ; . . . ;Cðxn21 þ dÞ;Cðxn þ dÞ} for any arbitrary
distance, d. A set of m non-sequential points of the points of the initial sequence are
mapped into the surface F ¼ F{Cð yÞ;Cð yþ 1Þ; . . . ;Cð yþ 41Þ} in phase space
using kriging surface interpolation. The embedding dimension, m, of the fission power
time series, calculated through the false nearest neighbors method (Hegger et al., 1999;
Kennel, 1997), represents the phase space that underlies the process and is equal to 5
for both the P1 and P3 simulations. A point in the 5D phase space then provides a
predicted value for the fission power by interpolating the surface F using kriging. The
prediction of the fission power C at time level yþ 51;Cð yþ 51Þ is, therefore, obtained
from the fission power at time levels y; yþ 1; . . . ; yþ 41 and the surface F; that is
Cð yþ 51Þ ¼ F{Cð yÞ;Cð yþ 1Þ; . . . ;Cð yþ 41Þ} for some 1 ¼ 0:2: Then the time
level y is increased and the process repeated. If the time level y is incrementally
increased, an entire fission power time series can be generated.

This technique was applied to the fission rate and maximum temperature
fluctuations of P3 and P1 simulations with a superficial gas inlet velocity of 120 cm/s
and the predicted time series are shown in Figures 22(a), (b) and 23(a), (b). The predicted
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fission rate fluctuation was compared with the original time series and although strong
discrepancies were found, statistical properties, such as means, variance and power
spectra densities were preserved.

In addition, the similarity between the PSD behavior (Figures 22(d) and 23(d)) of the
predicted segment and the whole original time series, led to the investigation of a range
of confidence in the prediction. A short-term prediction of fission-power may have a
narrow range of confidence represented by:

CðtÞ þ 1ðtÞ ¼ C0 expðsDtÞ ð19Þ

where 1 is the error in the prediction, C0 is the initial fission-power and s is the
exponential co-efficient. Hence, for an error up to 20 percent, the prediction technique
can be applied to the P3 and P1 time series over approximately 2.50 and 1.50 s
ðs{P3} ¼ 0:3153 and s{P1} ¼ 0:4808Þ; respectively. The gas temperature associated
with the predicted fission rate is calculated through a simplified thermal balance
equation:

Figure 22.
P3 simulation: original and

prediction (a) fission rate
and (b) maximum gas

temperature fluctuation.
The deviation of the (c)

predicted fission rate from
the original times series

oscillates strongly,
however, the dominant

frequency (d) of the
predicted segment is

similar to the original time
series (Figure 18(a))
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›

›t
½ðCsM s þ CfM fÞT f� þ ðrfCfvfAÞ T f 2 TðintÞ

f

� �
¼ C ð20Þ

T ðintÞ
f is the inlet gas temperature, Mk and A are the mass of phase k and the bed cross

section area, respectively. Given the fission-power, C (RHS of equation (20)) and an
initial bed temperature, the bed temperature (Tf) is calculated by solving equation (20)
using a semi-analytical method. That is assuming C constant over a time interval and
solving the resulting equations for the previous values of Tf with a new predicted
temperature Tf. This is repeated to construct the whole time series. A comparison
between the predicted and original gas temperature fluctuations of P3 and P1

simulations over a short time interval are shown in Figures 22(b) and 23(b),
respectively.

Conclusions
This work investigates the numerical convergence and dynamics of a coupled neutron
radiation and multiphase fluid flow system. That is a nuclear fluidized bed reactor

Figure 23.
P1 simulation: original and
prediction (a) fission rate
and (b) maximum gas
temperature fluctuation.
The deviation of the (c)
predicted fission rate from
the original times series
oscillates strongly,
however, the dominant
frequency (d) of the
predicted segment is
similar to the original time
series (Figure 18(a))
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particularly rich in dynamics and ideal for such an investigation. The dynamics
associated with fission power fluctuations in the nuclear fluidized bed is investigated
using deterministic chaos theory and autocorrelations.

The main conclusions from the applications are:
. The reactor can take over 5 min after start up to establish a quasi-steady-state

and the mechanism for the long term oscillations of power have been established
as a heat loss/generation mechanism.

. There is a clear need to parameterize the temperature of the reactor and,
therefore, its power output for a given fissile mass or reactivity.

. The fission-power fluctuates by an order of magnitude with a frequency of
0.5-2 Hz. However, the thermal power output from gases is fairly steady.

. The fission-power oscillations depend on the neutron angle approximation.
These preliminary results show smaller amplitude of power oscillations for
neutron transport theory (P3) then for diffusion theory (P1). In addition the
coordinate system ðr 2 z or 3 2 DÞ is shown to influence the dynamics.

. While the nuclear fluidized bed has reached a quasi-steady state after a
few minutes of operation there are no signs of dynamic instability. Reactor start
up seems particularly unpredictable in terms of the initial temperature rise, thus
more work is required to investigate this as well as accident scenarios.

. There is a strong relationship between the bubbles production and the power
released.

. The flow regime in chaotic fluidized bed can be statistically investigated through
dynamical analysis. Such analysis can reveal interesting features related to the
complexity of the flow.

. The variables solved in this problems, in particular the fission rate, can be
predicted over a short time interval with a good range of confidence.

Note

1. Animations concerning the following sections are available at: http://amcg.ese.imperial.ac.uk
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